Bacterial Sphingomyelinases and Phospholipases as Virulence Factors.
نویسندگان
چکیده
Bacterial sphingomyelinases and phospholipases are a heterogeneous group of esterases which are usually surface associated or secreted by a wide variety of Gram-positive and Gram-negative bacteria. These enzymes hydrolyze sphingomyelin and glycerophospholipids, respectively, generating products identical to the ones produced by eukaryotic enzymes which play crucial roles in distinct physiological processes, including membrane dynamics, cellular signaling, migration, growth, and death. Several bacterial sphingomyelinases and phospholipases are essential for virulence of extracellular, facultative, or obligate intracellular pathogens, as these enzymes contribute to phagosomal escape or phagosomal maturation avoidance, favoring tissue colonization, infection establishment and progression, or immune response evasion. This work presents a classification proposal for bacterial sphingomyelinases and phospholipases that considers not only their enzymatic activities but also their structural aspects. An overview of the main physiopathological activities is provided for each enzyme type, as are examples in which inactivation of a sphingomyelinase- or a phospholipase-encoding gene impairs the virulence of a pathogen. The identification of sphingomyelinases and phospholipases important for bacterial pathogenesis and the development of inhibitors for these enzymes could generate candidate vaccines and therapeutic agents, which will diminish the impacts of the associated human and animal diseases.
منابع مشابه
Crystal structure of SmcL, a bacterial neutral sphingomyelinase C from Listeria.
Sphingomyelinases C are enzymes that catalyze the hydrolysis of sphingomyelin in biological membranes to ceramide and phosphorylcholine. Various pathogenic bacteria produce secreted neutral sphingomyelinases C that act as membrane-damaging virulence factors. Mammalian neutral sphingomyelinases C, which display sequence homology to the bacterial enzymes, are involved in sphingolipid metabolism a...
متن کاملEvidence of multiple extracellular phospholipase activities of Aspergillus fumigatus.
Extracellular phospholipase activity has been implicated in the pathogenesis of several bacterial infections. Recently, extracellular phospholipase activity has been proposed as a virulence factor in the opportunistic yeast Candida albicans. Aspergillus fumigatus is the most pathogenic member of its genus, responsible for > 90% of infections. Previously, no specific virulence factors have been ...
متن کاملAcinetobacter baumannii Virulence Is Mediated by the Concerted Action of Three Phospholipases D
Acinetobacter baumannii causes a broad range of opportunistic infections in humans. Its success as an emerging pathogen is due to a combination of increasing antibiotic resistance, environmental persistence and adaptation to the human host. To date very little is known about the molecular basis of the latter. Here we demonstrate that A. baumannii can use phosphatidylcholine, an integral part of...
متن کاملPhospholipases: an overview.
Phospholipids are present in all living organisms. They are a major component of all biological membranes, along with glycolipids and cholesterol. Enzymes aimed at cleaving the various bonds in phospholipids, namely phospholipases, are consequently widespread in nature, playing very diverse roles from aggression in snake venom to signal transduction, lipid mediators production, and digestion in...
متن کاملFunctional analysis of the phospholipase C gene CaPLC1 and two unusual phospholipase C genes, CaPLC2 and CaPLC3, of Candida albicans.
Phospholipases C are known to be important regulators of cellular processes but may also act as virulence factors of pathogenic microbes. At least three genes in the genome of the human-pathogenic fungus Candida albicans encode phospholipases with conserved phospholipase C (Plc) motifs. None of the deduced protein sequences contain N-terminal signal peptides, suggesting that these phospholipase...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Microbiology and molecular biology reviews : MMBR
دوره 80 3 شماره
صفحات -
تاریخ انتشار 2016